Math 564: Advance Analysis 1

Lecture 25

Recall. A function $f: (a,b) \rightarrow |\mathbb{R}$ is called convex (resp. concere) if $\forall x_{1,2} \in [a, L]$, $\forall d \in [0, 1]$, we have $f(d \cdot x + (1 - d)y) \leq d f(x) \in (1 - d) \cdot f(g)$ *(4) $\frac{(k)}{x + 2} = \frac{f(x_1) - f(k_1)}{x_1 - x_1}$ is increasing in the $[\text{If } f'' \text{ exists}] \ \angle = > \ f'' \ge 0.$ Examples, (a) For doll, that is work 2=> d>1, and which 2=> d<1. (b) the et is work, while the logt is which the Minkowski's inequality (a-ineq. for le, p>1). Ilf+gllp ≤ llfllp+llgllp for all p>1. Proof It for gove O, this is privial, so suppose IIf Ip, Ily - D. Norma Fixing hy liftlp+ 119 llp I dividing hole sides), we may Essene WLOG ht lfllp + llgllp = 1. Under this assurption, we read to prove lf + glp ≤ 1. Dy triangle ineq. | f+g| < | f|+|g|, so | f+s|^P = (|f|+|g|)^P, here it is even to prove Ilftyll ≤ for f,g 2D. Raising to the power of p, we need to prove] (ftg) d) ≤ 1. Letting di= IIfIIp, so IIgIIp = (I-d), we write $f = d \cdot F$ and $g = (I-d) \cdot L$, for some moren 1 functions F, G, handly $F = \frac{1}{\|F\|_p} \cdot f \cdot d$ $G := \frac{1}{\|g\|_p}$. Now conversity of ()^P applies: Now convertify of (.) poplies: (++ g)^P = (d· F + (1-2) · C)^P ≤ d· F^P + (1-2) L^P, integrating hich, ve get: $\left[(f + \varsigma)^{P} \leq d \cdot \left[F^{P} + (i - d) \right] C^{P} = d \cdot ||F||_{p}^{P} + (i - d) \cdot ||G||_{p}^{P} = d \cdot |+(i - d) \cdot ||G||_{p}^{P} = d \cdot ||G||_{p}^$

$$\|f\|_{W} := \inf \{ c \in \mathcal{O} : |f| \leq c \text{ a.e.} \}.$$
Is fact, become all unions of well is call. Min inf = min.
If fact, become all unions of well is call. Min inf = min.
If f(0, n) be the set (mod null) of t-measurable functions f
with If (0, n) be the set (mod null) of t-measurable functions f
with If (0, n) be the set (mod null) of t-measurable functions f
with If (0, n) be the set (mod null) of t-measurable functions f
with If (0, n) be the set (mod null) of t-measurable functions f
under words, we can always work with representations of almost
anality alenes, where If (10 is a houset suprement.
In other words, WLOG, we are think of $t^{\infty}(K, M)$ as the space (mod all)
of bidd measurable functions with the usual sup-norm.
Prof (a) II-16 is a norm (obeys II f+ g)(a) \leq II f(10 + 11 g)(a) on $t^{\infty}(K, M)$.
(b) $t^{\infty}(K, M)$ is a Banach space.
(c) Simple functions are dense in $t^{\infty}(K, M)$.
However, $t^{\infty}(K, M)$ is almost never separable (modes X is finite of
its the counting measure, tike IR^{α}).
Def. let A be a (discele) st with \mathcal{F} the counting measure. We denste
by $t^{\alpha}(A) := t^{\alpha}(A, M)$, for $1 \leq p \in \infty$. In particular, $t^{\alpha}(A) = R^{\alpha}$,
Name $d = 50, s, \dots, d-15$.
Prog. $t^{\infty}(N)$ is almost never superable supercode (modes X is listed,
indeed $\forall x_{N} \in 2^{N}$ distinct, $\|x - y\|_{\infty}^{\alpha} = \sup_{x \in P} |x(x_{1}, x_{1})| = 1$.

Algebraic properties at l^p speces. We want to understand it I & L^p d g & C¹.
Prop. Algebraic average > geometric average, i.e.
$$\forall a, b > 0$$
 algebraic average > geometric average, i.e. $\forall a, b > 0$ algebraic average > geometric average, i.e. $\forall a, b > 0$ algebraic average > geometric average, i.e. $\forall a, b > 0$ algebraic average > $d \cdot a + (i - a) B > a^{d} \cdot b^{(i - a)}$.
Proof. This is just the unreal of t > e^t to be written $a = e^{A}, b - e^{B}$, so $d \cdot a + (i - a) B = d^{-} e^{A} + (i - a) e^{B} > e^{AA + (i - a)B^{-}} = a^{d \cdot b} e^{(i - a)}$.
Hölder's inequality. It fell and gel⁴ have figet there $t^{-} = t^{-} + \frac{1}{4} \cdot \frac{1}{4}$ fields:
If fight $f \leq ||f||_{p} \cdot ||g||_{q}$ if paul q are onjugate expanding i.e. $t^{-} + \frac{1}{4} = 1$.
Wood By replacing f and g with f' alg f' and p, with $f = d = f$, reduce to proving the real of the many answer liftly, $||g||_{q} = 0$.
Divides both sides by $||f||_{p} \cdot ||g||_{q}$, allows as to assume the liftly of the source of the sou