Math 564: Advance Analysis 1
Lecture 25

Recall. A fuchien $f:(a, b) \rightarrow \mathbb{R}$ is called convex (resp. concave) if $\forall x, s \in(a, b)$,

$\forall \alpha \in[0,1]$, we have $f(\alpha \cdot x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) \cdot f(y)$ (sp. \geqslant).
Prop. f is convex $\Leftrightarrow \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{1}-x_{1}}$ is increasing in x_{1}.

$$
\text { If } \left.f^{\prime \prime} \text { exists }\right] \Leftrightarrow f^{\prime \prime} \geqslant 0
$$

Examples. (a) Food $d \theta$, $t \mapsto t^{\alpha}$ is cortex $\Leftrightarrow \alpha \geqslant 1$, and concave $\Leftrightarrow \alpha<1$. (b) $t \mapsto e^{t}$ is convex, while $t \mapsto \log t$ is concave.

Minkowski's inequality $\left(\Delta\right.$-ice. .for $\left.l^{p}, p \geqslant 1\right) . \quad\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$ for all $p \geqslant 1$.
Proof. If f or g are 0 , h his is trivial, so suppose $\|f\|_{p},\|y\|_{p}>0$. Normalising hoy $\|f\|_{p}+\|q\|_{p}$ (dividing both sides), we may assume wLOC ht $\|f\|_{p}+\|g\|_{p}=1$. Under his assumption, we recd do prove $\|f+g\|_{p} \leq 1$.
 it is ecungh to parve $\|f+g\|_{p} \leq 1$ for $f, g \geq 0$.
Raising to for pounce of p, we need to prove $\int(f+s)^{p} d y \leq 1$.
Letting $\alpha:=\|f\|_{p}$, so $\|g\|_{p}=(1-\alpha)$, we write $f=\alpha \cdot F$ anal $g=(1-\alpha) \cdot G$, for some norm 1 functions F, G, hand, $F=\frac{1}{\|f\|_{p}} \cdot f$ d $G:=\frac{1}{\|g\|_{p}} \cdot g$. Now convexity of $(-)^{p}$ applies:
$(f+g)^{p}=(\alpha \cdot F+(1-\alpha) \cdot \zeta)^{p} \leq \alpha \cdot F^{P}+(1-\alpha) G^{p}$, integrating hich, ne get:

$$
\int(f+s)^{p} \leq \alpha \cdot \int F^{p}+(1-\alpha) \int c^{p}=\alpha \cdot\|F\|_{p}^{p}+(1-\alpha) \cdot\|G\|_{p}^{p}=\alpha \cdot 1+(1-\alpha)-1=1 .
$$

Thus, L^{p} spices, $1 \leq p<\infty$, are normed vector spaces. In fact:
Thur. For $1 \leq p<\infty$, ${ }^{P}$ is a Banach space.
Prod. Recall that we weed to show ht if a series $\sum_{n} f_{n}$ converges absolutely, i.e. $\sum_{n}\left\|f_{n}\right\|_{p}<\infty$, then it converges in norm. B_{y} Minkouski's inc naclity, we have $\left\|\sum_{i \leq n}\right\| f_{i}\left\|_{p} \leq \sum_{i \leq n}\right\| f_{i}\left\|_{p} \leq \sum_{n}\right\| f_{n} \|_{p}<a$. Thus, $g=\sum_{n \in \mathbb{N}}\left|f_{n}\right| \in l^{p}$ bane $\|g\|_{p}=\left\|\sum_{n}\left|f_{n}\right|\right\|_{p} \leqslant \sum_{n}\left\|f_{n}\right\|_{p}<\infty$.
In particular, $g<\infty$ are. hence the series $\sum_{n} f_{n}(x)$ converges for are. x do a limit $f(x)$.
Note at $\left|f-\sum_{i \leq u} f_{i}\right|^{p} \leq\left(|f|+\sum_{i \leq u}\left|f_{i}\right|\right)^{p} \leq(2 g)^{p}=2^{p} \cdot g^{p} \in L^{\prime}$,
so bs the DCT, $\quad \int\left|f-\sum_{i \leq n} f_{i}\right|^{p} d s \rightarrow 0$, here $\left\|f-\sum_{i \leq n} f_{i}\right\|_{p} \rightarrow 0$.
Than. The set of simple functions is dense in $l^{p}(x, \mu)$.
Prod. By writing $f=f_{+}-t$, it is enough to prove for $t \geqslant 0$.
let $f_{n} \rightarrow f$ be an increasing sequence of non-ney siple fnachrons,
so $f_{n}^{p} \rightarrow f^{p}$ al $\left(f-f_{u}\right)^{p} \leq 2^{p} f^{p}$, so h, the $D\left(T,\left\|f-f_{u}\right\|_{p} \rightarrow 0\right.$.
Gr. If (x, y) is cathy generated (nod y^{μ}-null), then $l^{P}(x, \mu)$ is separable, hence Polish, for $1 \leq p<\infty$.
L^{∞} space. For (X, μ) ensure space $f: X \rightarrow \mathbb{R} J^{\prime} f$-neasareble.
Wed like to define $\|f\|_{\infty}$ as the $\sup |f(x)|$ bat his would depend on the representative $f \quad x \in x$ of the almost equaling class of f. Nite $M_{1} \sup _{x \in x}|f(x)|=\inf _{x}\{c \geqslant 0:|f| \leq c\}$,
This last version can be $x \in x$ modified to be invariant under wall sets.

$$
\|f\|_{\infty}:=\inf \{c \neq 0:|f| \leq c \text { a.e. }\} .
$$

In fact, becere ctbl mions of all is aull, $H_{\text {is }}$ int $=$ min. $\|f\|_{s}$ is called the ersential inpremom of $|f|$.
ut $L^{\infty}(x, y)$ be the set (mod nall) of μ^{μ}-measurablle funchions f with $\|f\|_{\infty}<\infty$.
$O b_{s .}$ If $f \in L^{\infty}\left(x, y^{\mu}\right)$, here $\exists \tilde{f}=f$ a.e. and $\|\tilde{f}\|_{\infty}=\sup |\tilde{f}(x)|=\|f\|_{\infty}$.
Sn other words, we an clangs work will representatives of almort equality clones, shere Uf\| $\|_{\infty}$ is an honest supceman.

In other words, WCOG, we can think of $l^{\infty}(x, \mu)$ as the ipace (mod acll) of bdd measuscable tunctions rith the usual sup-norm.

Prop. (a) $\|\cdot\|_{\infty}$ is a norm (obers $\left.\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}\right)_{o_{n}} L^{\infty}(x, \mu)$.
(b) $L^{\infty}(X, \mu)$ is a Banach spcce.
(c) Sinple fanctions are clense in $L^{\infty}(x, \mu)$.

However, $L^{\infty}(X, \mu)$ is almost neever separable (unlen X is tonite el μ is the conting neasure, like \mathbb{R}^{d}).

Def. Let A be a (discrete) nt with μ the conenting neasure. We clenote by $l^{p}(A):=l^{p}\left(A,{ }^{\mu}\right)$, for $1 \leq p \leq \infty$. In particular, $l^{p}(d)=\mathbb{R}^{d}$, shene $d=\{0,1, \ldots, d-1\}$.

Pop. $l^{\infty}(\mathbb{N})$ is ant separable.
Pcoot. N.te ht $l^{\infty}(\mathbb{N})=\bigcup n^{\mathbb{N}}=$ the set f bdd sequecces.
In particaler, the continanem $2^{\mathbb{N}} \subseteq \mathcal{C}^{\infty}(\mathbb{N})$ is liscrete subset, indeed $\forall x, y \in \mathcal{Z}^{\mathbb{N}}$ dirtinct, $\|x-y\|_{\infty}=\sup _{u}|x(u)-y(n)|=1$.

Algebraic properties of L^{p} spaces. We want to wollestacd if $f \in L^{p} d g \in L^{q}$, then $f \cdot g \in L^{?}$?

Prop. Algebraic average \geqslant geometric average, i.e. $\forall a, b>0 a d$ $\alpha \in(0,1)$, we have

$$
\alpha \cdot a+(1-\alpha) b \geqslant a^{\alpha} \cdot b^{(1-\alpha)}
$$

Proof. This is jest the wouxith of $t \mapsto e^{t}$ bo writing $a=e^{A}, b=e^{B}$,

$$
\text { so } \alpha \cdot a+(1-\alpha) b=\alpha-e^{A}+(1-\alpha) \cdot e^{B} \geqslant e^{\alpha A+(1-\alpha) B}=\left(e^{A}\right)^{\alpha} \cdot\left(e^{B}\right)^{(1-\alpha)}=
$$

$$
=a^{\alpha} \cdot b^{(1-\alpha)}
$$

Hölder's inçaclity. If $f \in L^{p}$ and $g \in L^{q}$ thee $f-g \in L^{r}$ here $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$. Ic fact:

$$
\|f \cdot g\|_{r} \leq\|f\|_{p} \cdot\|g\|_{q}
$$

In particular, $\|f \cdot g\|_{1} \leqslant\|f\|_{p} \cdot\|g\|_{q}$ it pane q are wojigate exponent, i.e. $\frac{1}{p}+\frac{1}{q}=1$.

Prot. By replacing f and g with f^{\prime} al g^{r} and p, q with $\frac{p}{r} d \frac{q}{r}$, rechcec to proving for $r=1$. We man asinine $\|f\|_{p},\|g\|_{q}>0$. Dividing both sides $b\|E\|_{p} \cdot\|g\|_{q}$, allows as bo assure he $\|f\|_{p}=1,\|g\|_{q}=1$. So re reed to show

$$
\begin{gathered}
\|f \cdot g\|_{1} \leqslant 1 . \\
|f \cdot g|=|f| \cdot|g|=\left(|f|^{p}\right)^{\frac{1}{p}} \cdot\left(|g|^{q}\right)^{\frac{1}{q}} \leqslant \frac{1}{p} \cdot|f|^{p r o p}+\frac{1}{q} \cdot|g|^{q} \text {, so integrating: } \\
\left.\int|f g| d j^{n} \leqslant \frac{1}{p} \int|f|^{p} d\right)^{\mu}+\frac{1}{q} \int|g|^{q} d j=\frac{1}{p} \cdot\|f\|_{p}^{p}+\frac{1}{q} \cdot\|g\|_{q}^{q}=\frac{1}{p}+\frac{1}{q}=1 .
\end{gathered}
$$

